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A RIESZ TYPE REPRESENTATION THEOREM FOR RIESZ
SPACE-VALUED POSITIVE LINEAR MAPPINGS

信州大学・工学部 河邊 淳 (JUN KAWABE)

DBPARTMENT OF MATHEMATICS, FACULTY OF ENGI.NEERING, $\mathrm{s}_{111\mathrm{N}\mathrm{S}\mathrm{H}\mathrm{U}}$ UNfVERSlTY, 4-17-1WAKASATO, NAGANO 380-8553, JAPAN

ABSTRACT. Let $X$ be a completely regular Hausdorff space and $V$ a Dedekind
complete Riesz space. The purpose of this note is to give a necessary and suffl-
cient condition (tightness condition) which assures the validity of an analogue
of the Riesz representation theorem for a positive linear mapping fiom $C$(X)
into $V$ .

1. INTRODUCTION

Let $X$ be a Hausdorff space and $V$ a Dedekind complete Riesz space. Denote by
$B(X)$ the a-field of all Borel subsets of $X$ . A $V$-valued a-measure on $X$ is a finitely
additive set function $\mu$ : $B(X)arrow V$ such that $\mu(\bigcup_{n=1}^{\infty}A_{n})=\sup_{n\in \mathrm{N}}\sum_{k=1}^{n}\mu(A_{k})$

whenever $\{A_{n}\}_{n\in \mathrm{N}}$ is a sequence of pairwise disjoint sets in $B(X)$ . If $V$ possesses
a Hausdorff vector topology $\mathrm{r}$ for which each upper bounded monotone increasing
sequence in $V$ converges in the $T$-topology to its least upper bound, V-valued
$\sigma$-measures are ordinary topological vector space-valued measures that are fairly
well understood; see Diestel and Uhl [2] and Kluvanek and Knowles [4]. But $V$

need not possess any such topology; see Floyd [3].
The purpose of this note is to give a necessary and sufficient condition which

assures that a given positive linear mapping $T$ ffom $\mathrm{C}\{\mathrm{X}$), the space of all
bounded, continuous, real-valued functions on $X$ , into a Dedekind complete Riesz
space $V$ can be uniquely represented by a $V$-valued $\mathrm{r}$-measure $\mu$ on $X$ such that
$T(f)= \int_{X}fd\mu$ for all $f\in$ C{X). A successful analogue of the Riesz oepreaenta-
tion theorem was first proved by Wright [8, Theorem 4.1] and [10, Theorem 4.5]
in the case that $X$ is compact. See also [9, Theorem 1] for the case that $X$ $\mathrm{i}$

localy compact. For the case that the representing measure $\mu$ is finitely additive,
see Lipecki [5] and the literature therein. In Boccuto and Sambucini [1] a version
of the above representation theorems has been discussed for “monotone integrals”
with respect to Dedekind complete Riesz space- alued capacities.
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Key words and phrases. Dedekind complete, Riesz space, positive linear mapping, cr-measure,

tightness condition, The Riesz representation theorem.
Research supported by Grant-in-Aid for General Scientific Research No. 15540162, the Min-

istry of Education, Science, Sports and Culture, Japan.

数理解析研究所講究録 1365巻 2004年 62-67



83

In Section 2 we recall some basic facts on Riesz spaces and give some preliminary
results concerning regularities of Riesz space-valued $\mathrm{c}\mathrm{r}$-measures on a topological
space. The results explained in the preceding paragraph are obtained in Section 3.

2. NOTATION AND PRELIMINARJES

All the topological spaces in this paper are Hausdorff and denote by $\mathbb{R}$ and $\mathrm{N}$

the set of all real numbers and the set of all natural numbers respectively.

2.1. Riesz spaces. A Riesz space is said to be Dedekind complete if every non-
empty order bounded subset has a least upper bound. Every Dedekind complete
Riesz space is Archimedean; see Schaefer [6, page 54].

Let $V$ be a Riesz space and put $V^{+}:=\{u\in V : u\geq 0\}$ . Given a net $\{u_{\alpha}\}_{\alpha\in\Gamma}$

in $V$ we write $u_{\alpha}\downarrow u$ to mean that it is a decreasing net and $.\mathrm{n}\mathrm{f}_{\alpha\in)}$ $u_{\alpha}=nz$ . The
meaning of $u_{\alpha}\uparrow u$ is analogous.

Let $e\in V$ with $e>0.$ Denote by $V_{e}$ the principal ideal generated by $e$ , that
is, $V_{e}:=$ {$u\in V$ : $|u|\leq re$ for some $r>0$}. Then, $V_{e}$ is an AM-space with
order unit $e$ under the order unit norm $||$ tt $||_{e}:= \inf\{r>0:|u|\leq re\}$ , so that by
the Kakutani-Krein theorem (see, for instance, [6, page 104]), it is isometrically
and lattice isomorphic to $C(S)$ , the space of aU (bounded) continuous real-valued
functions on a compact space $S$ . Since $V$ is Dedekind complete, so also is $V_{e}$ .
Hence $S$ is Stonean, that is, the closure of every open subset of $S$ is also open [6,
page 108].

2.2. $\sigma$-measures. Let $X$ be a topological space. Denote by $B(X)$ the a-field
of all Borel subsets of $X$ , that is, the a-field generated by the open subsets of
$X$ . Denote by $C(X)$ the Banach lattice of all bounded, continuous, real-valued
functions on $X$ with supremum norm $||f||_{\infty}:= \sup_{x\in X}|\mathrm{B}(\mathrm{X})|$ and by $B(X)$ the
Banach lattice of all Borel measurable, bounded, real-valued functions on $X$ with
the same norm.

Let $V$ be a Dedekind complete Riesz space. A finitely additive, positive set
function $\mu$ : $B(X)$ - $V$ is called a $\sigma$-measure on $X$ if it is a-additive in the
sense that whenever $\{A_{n}\}_{n\in \mathrm{N}}$ is a sequence of pairwise disjoint sets in $\mathrm{B}(\mathrm{X})$ then
$\mu(\bigcup_{n=1}^{\infty}A_{n})=\sup_{n\in \mathrm{N}}\sum_{k=1}^{n}\mu(A_{k})$ . We emphasize that only measures taking
positive values are considered in this paper.

As in the scalar case, every $\mathrm{a}$-measure has the monotone sequential continuity
fiom above and from below, that is, whenever $\{A_{n}\}_{n\in \mathrm{N}}$ is an increasing (respec-
tively a decreasing) sequence of sets in $B(X)$ then $\mu(\bigcup_{n=1}^{\infty}1_{n})$ $= \sup_{\mathrm{n}\in \mathrm{N}}\mu(A_{n})$

(respectively $\mu(\bigcap_{\mathrm{n}=1}^{\infty}A_{n})=\inf_{n\in \mathrm{N}}\mu(A_{n})$ ) $.-$

In Wright $[8, 10]$ a $V$-valued integral with respect to a $\sigma$-measure $\mu$ is con-
structed and the successful analogues of the monotone convergence theorem and
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the Lebesgue convergence theorem are obtained. We shall use the results there
freely in this paper.

2.3. Regularities of a-measures. As in usual measure theory on topological
spaces we need to introduce some notions of regularities for Riesz space-valued
a-measures. Let $X$ be a topological space and $V$ a Dedekind complete Riesz
space.

Definition 1. Let $\mu$ be a $V$-valued $a$-measure on $X$ .
(i) $\mu$ is said to be quasi-regular if whenever $G$ is an open subset of $X$ then

$\mathrm{H}(\mathrm{G})=\sup$ {$\mu(F)$ : $F\subset G$ and $F$ is closed}.
(ii) $\mu$ is said to be quasi-Radon if whenever $G$ is an open subset of $X$ then

$\mathrm{H}(\mathrm{G})=\sup$ {$\mu(K)$ : $K\subset G$ and $K$ is compact},

$\mu(G)=\sup$ {$\mu(F)$ : $F\subset G$ and $F$ is closed}.
(ii) $\mu$ is said to be quasi-Radon if whenever $G$ is an open subset of $X$ then

$\mu(G)=\sup$ {$\mu(K)$ : $K\subset G$ and $K$ is compact},
and it is said to be tight if the above condition holds for $G=X.$

(iii) $\mu$ is said to be $\tau$ -smooth if whenever $\{\mathrm{G}\mathrm{a}\}\mathrm{Q}\mathrm{e}\mathrm{r}$ is an increasing net of open
subsets of $X$ with $G= \bigcup_{\alpha\in\Gamma}G_{\alpha}$ then $\mathrm{H}(\mathrm{G})=\sup_{\alpha\in\Gamma}\mu(G_{\alpha})$ .

Lemma 1. Let $\mu$ be a $V$-valued a measure on $X$ .
(i) $\mu$ is quasi-regular if and only if for each open subset $G$ of $X$ there exist $a$

net $\{\mathrm{p}\mathrm{a}\}\mathrm{a}\mathrm{e}\mathrm{v}$ in $V$ with $p_{\alpha}\mathrm{J}0$ and a net $\{F_{\alpha}\}_{\alpha\in\Gamma}$ of closed subsets of $X$

such that $F_{\alpha}\subset G$ and $\mu(G-F_{\alpha})\leq p_{\alpha}$ for all $\alpha\in\Gamma r$

(ii) $\mu$ is quasi-Radon if and only $\dot{f}f$ for each open subset $G$ of $X$ there exist $a$

net $\{p_{\alpha}\}_{\alpha\in\Gamma}$ in $V$ with $p_{\alpha}L$ $0$ and a net $\{\mathrm{K}\mathrm{Q}\}\mathrm{a}\mathrm{e}\mathrm{r}$ of compact subsets of $X$

such that $K_{\alpha}\subset G$ and $\mu(G-K_{\alpha})$ $\leq p_{\alpha}$ for all $\alpha\in\Gamma$ .
(iii) $\mu$ is tight if and only if there exist a net $\{p_{\alpha}\}_{\alpha\in\Gamma}$ in $V$ with $p_{\alpha}\downarrow 0$ a$nd$ $a$

net $\{K_{\alpha}\}_{\alpha\in\Gamma}$ of compact subsets of $X$ such that $\mu(X-K_{\alpha})\leq p_{\alpha}$ for all
$\alpha\in\Gamma$ .

Further, the above nets $\{F_{\alpha}\}_{\alpha\in\Gamma}$ and $\{K_{a}\}_{\alpha\in\Gamma}$ can be chosen to be increasing.
Lemma 2. Let $\mu$ be a $V$ -valued $\sigma$-rneasure on X. Then the following two condi-
tions are equivalent:

(i) $\mu$ is tight and quasi-regular.
(ii) $\mu$ is quasi-Radon.

Lemma 3. Every quasi-Radon $V$-valued $r$measure $\mu$ on $X$ is r-smooth.
The following result can be proved as in the case of scalar measures; see for

instance [7, Proposition 1.3.2].

Proposition 1. Let $\mu$ be a $\tau$-smooth $V$ -valued $\sigma$-measure on X. Let $\{f_{\alpha}\}_{\alpha\in\Gamma}$

be a unifo rmly bounded, increasing net of lower semicontinuous real-valu$ed$ func-
iions on X. If $f= \sup_{\alpha\in\Gamma}f_{\alpha}$ is the pointwise supremum of $f_{\alpha}$ , then $\int_{X}fd\mu=$

$\sup_{\alpha\in\Gamma}\int_{X}f_{\alpha}d\mu$ .
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Lemma 4. Assume that $X$ is completely regular. Let $\mu$ and $\nu$ be $\tau$ -smooth V-
valued $\sigma$-measures on X. If $\int_{X}fd\mu=\int_{X}fdv$ for each $f\in C(X)$ then $\mu=\nu$ on
$B(X)$ .

3. AN ANALOGUE OF THE RIESZ REPRESENTATION THEOREM

Let $X$ be a topological space and $V$ a Dedekind complete Riesz space. In this
section we give a necessary and sufficient condition (tightness condition) which as-
sures the validity of an analogue of the Riesz representation theorem for a positive
linear mapping from $C(X)$ into $V$ .

First we extend Proposition 4.1 [8] to the case that $X$ is not necessarily compact.

Proposition 2. Let $X$ be a completely regular space and $\mathrm{Y}$ a compact space. Let
$T$ : $C(X)arrow C(\mathrm{Y})$ be a positive linear mapping. Assume that there exist a net
$\{p_{\alpha}\}_{\alpha\in\Gamma}$ in $C(\mathrm{Y})$ with $p_{\alpha}\mathrm{J}\mathrm{r}$ $0$ and a net $\{K_{\alpha}\}_{\alpha\in\Gamma}$ of compact subsets $ofX$ such that
$\mathrm{T}(\mathrm{f})\leq p_{\alpha}$ whenever at 6 $\Gamma$ and $f\in C(X)$ with $0\leq f\leq 1$ and $\mathrm{f}(\mathrm{K}\mathrm{a})=\{0\}$ . Put
$N:=$ $\{y\in \mathrm{Y}:\inf_{\alpha\in \mathrm{t}} p_{\alpha}(y)>0\}$ . Then there exists a mapping $\tilde{T}$ : $B(X)$ $arrow B(\mathrm{Y})$

such that

(i) $T$ is positive and linear,
(ii) for each $f\in$ C(X), $\tilde{T}(f)(y)=T(f)(y)$ for all $y\not\in N,$

(iii) if $\{f_{n}\}_{n\in \mathrm{N}}$ is a unifo rmly bounded sequence in $B(X)$ which converges point-
wise to $f$ , then $f\in B(X)$ and

$\tilde{T}(f)(y)=\lim_{narrow\infty}\overline{T}(f_{n})(y)$ for all $y\in$ Y,

(iv) if $f$ is a lower semicontinuous real-valued function on $X$ , then

$T(f)(y)$ $=$ $\mathrm{T}(\mathrm{f})(\mathrm{y})$ : $0\leq g\leq f,$ $g\in C(X)\}$ for all $y\not\in N,$

and hence $\mathrm{f}(\mathrm{f})$ is lower semicontinuous on $\mathrm{Y}-N.$

Prom Proposition 2 we naturally reach the following definition.

Definition 2. Let $X$ be a topological space and $V$ a Riesz space. We say that
a positive linear mapping $T:C(X)arrow V$ satisfies the tightness condition if there
exist a net $\{p_{\alpha}\}_{\alpha\in\Gamma}$ in $V$ with $p_{\alpha}\downarrow 0$ and a net $\{\mathrm{K}\mathrm{a}\}\mathrm{a}\mathrm{e}\mathrm{r}$ of compact subsets of
$X$ such that $T(f)\leq p_{\alpha}$ whenever $\alpha\in\Gamma$ and $f\in C(X)$ with $0\leq f\leq 1$ and
$f(K_{\alpha})=\{0\}$ .

Let $S$ be a compact Stonean space. Denote by $\mathcal{M}$ the $\mathrm{y}$-ideal of all meager
Borel subsets of $S$ . Let $\kappa$ be a canonical $C(S)$-valued $\mathrm{a}$-measure on $S$ such that

(i) $\mathcal{M}$ is the kernel of $\kappa$ ,
$(\kappa 2)\kappa(E)=\chi_{E}$ for all clopen subset $E$ of $S$ .
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The existence of $\kappa$ follows ffom [8, page 118] and is is called the Birkhoff- Ulam
$C(S)$ -valued $\sigma$-measure on $S$.

The following lemma has been already given in [8] implicitly.

Lemma 5. Let $\kappa$ be the Birkhoff- Ulam $\mathrm{C}(\mathrm{X})$ -valued $\sigma$-measure on S. Then
$\int_{S}fd\kappa=f$ for all $f\in C(S)$ .

We are now ready to give an analogue of the Riesz representation theorem for
a Dedekind complete Riesz space- alued positive linear mapping.

Theorem 1. Let $X$ be a completely regular space and $V$ a Dedekind complete
Riesz space. Let $T:C(X)” \mathrm{r}$ $V$ be a positive linear mapping. Then the following
two conditions are equivalent:

(i) $T$ satisfies the tightness condition.
(ii) There exists a quasi-Radon $V$-valued $a$ -measure $\mu$ on $X$ such that

(1) $T(f)= \int_{X}fd\mu$ for all $f\in$ C(X).

Further, the $\mu$ is determined by (1) and the quasi-Radonness of $\mu$ .

(1) $T(f)= \int_{X}fd\mu$ for all $f\in C(X)$ .
Further, the $\mu$ is determined by (1) and the quasi-Radonness of $\mu$ .

The tightness condition in the above theorem is automatically satisfied if $X$ is
compact, and hence Theorem 1 reduces to a special case of the results obtained
in [8, TheOrem4.1] and [10, Theorem 4.5]. See also [9, Theorem 1]. However, our
work will be needed to develop the theory of the weak order convergence of Riesz
space-valued a-measures, in which we usually assume that the involved a-measures
are defined on metric spaces or more generally on completely regular spaces. As an
application in this light, we shall show in a later work that the operation making
the Borel product of two Riesz space-valued $\mathrm{c}\mathrm{r}$-measures is jointly continuous with
respect to the weak order convergence of a-measures.
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